skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gyory, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The correct description of strongly interacting matter at low temperatures and moderately high densities—in particular the conditions realized inside neutron stars—is still unknown. We review some recent results on the magnetic dual chiral density wave (MDCDW) phase, a candidate phase of quark matter for this region of the QCD phase diagram. We highlight the effects of magnetic fields and temperature on the condensate, which can be explored using a high-order Ginzburg-Landau (GL) expansion. We also explain how the condensate’s nontrivial topology, which arises due to the asymmetry in the lowest Landau level modes, affects its physical properties. Finally, we comment on the possible relevance of these results to neutron star applications. Over a wide range of densities and magnetic field strengths, MDCDW is preferred over the chirally symmetric ground state at temperatures consistent with typical cold neutron stars, and in some cases, even hot ones. 
    more » « less